| Course<br>Type | Course<br>Code | Name of Course            | L | Т | P | Credit |
|----------------|----------------|---------------------------|---|---|---|--------|
| DSC2           | NMEC102        | Engineering Mechanics Lab | 0 | 0 | 2 | 1      |

## Course Objective

This course deals with understanding, verification and practical applications of basic principles of engineering mechanics.

## Learning Outcomes

On successful completion of this course, students will learn:

- Graphical Verification of some basic principles of Engineering Mechanics.
- Gain insights into working principles of basic machines like pulley, wedge, screws etc.
- Software approach of tackling practical problems in Mechanics of Rigid Bodies

| Unit<br>No. | Topics to be Covered                                                                                     | Laborat<br>orv | Learning Outcome                                                                                |
|-------------|----------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------|
| 1           | Verification of polygon law of forces for equilibrium of rigid bodies using graphical method             | 1              | To develop an insight into graphical methods for solving the equilibrium of rigid bodies.       |
| 2           | To determine the coefficient of friction between two selected surfaces.                                  | 1              | Understanding the angle of repose and its relationship with the coefficient of friction.        |
| 3           | To find out the efficiency of a screw jack during raising and lowering.                                  | 1              | Conceptualizing the screw as a wedge.                                                           |
| 4           | Understanding belt-friction using belt friction apparatus.                                               | 1              | To understand belt-friction in the case of ropes wrapped around rigid surfaces.                 |
| 5           | To obtain the radius of gyration of rigid bodies using compound pendulum method.                         | 1              | Understanding the procedure for estimating radius of gyration of arbitrary shaped rigid bodies. |
| 6           | Investigation of mass moments of inertia in rotating rigid bodies                                        | 1              | To study the mass moment of inertia as a function of the radius of rotating bodies.             |
| 7           | Computational Simulation of a rigid disk in a rotating frame of reference.                               | 1              | Understanding the principle of conservation of energy and angular momentum of a rigid body.     |
| 8           | Force-Couple relationship for maintaining the equilibrium of an engine system using Virtual Work Method. | 1              | Application of virtual work method to real life system.                                         |
| 9           | To obtain the range of movement of a ventilation door actuated by a linear actuator.                     | 1              | Understanding the use of multi-force members in frames and machines.                            |
| 10          | Project Work- Using computer simulation of real-life problem of Rigid Body Mechanics                     | 1              | Students will learn the computer-oriented approach to mechanics problem.                        |

## Text Books / References:

- 1. Engineering Mechanics by Meriam and Kraige, sixth edition, John-Wiley and Sons.
- 2. Vector Mechanics for Engineers by Beer and Jhonston, eight edition, TMH.

